
Package: snn (via r-universe)
August 25, 2024

Type Package

Title Stabilized Nearest Neighbor Classifier

Version 1.1

Date 2015-08-22

Author Wei Sun, Xingye Qiao, and Guang Cheng

Maintainer Wei Sun <sunweisurrey8@gmail.com>

Description Implement K-nearest neighbor classifier, weighted nearest
neighbor classifier, bagged nearest neighbor classifier,
optimal weighted nearest neighbor classifier and stabilized
nearest neighbor classifier, and perform model selection via 5
fold cross-validation for them. This package also provides
functions for computing the classification error and
classification instability of a classification procedure.

License GPL-3

Depends R (>= 3.0.0), stats

NeedsCompilation no

Date/Publication 2015-08-23 10:22:09

Repository https://sunweisurrey.r-universe.dev

RemoteUrl https://github.com/cran/snn

RemoteRef HEAD

RemoteSha f82917937bbe322eec5aea640de126bd8510c4e4

Contents
snn-package . 2
cv.tune . 3
mybnn . 4
mycis . 5
mydata . 7
myerror . 8
myknn . 9

1

2 snn-package

myownn . 10
mysnn . 11
mywnn . 12

Index 14

snn-package Package for Stabilized Nearest Neighbor Classifier

Description

A package for implementations of various nearest neighbor classifiers, including K-nearest neighbor
classifier, weighted nearest neighbor classifier, bagged nearest neighbor classifier, optimal weighted
nearest neighbor classifier, and a new stabilized nearest neighbor classifier. This package also pro-
vides functions for computing the classification error and classification instability of a classification
procedure.

Details

Package: snn
Type: Package
Version: 1.0
Date: 2015-07-31
License: GPL-3

The package "snn" provides 8 main functions: (1) the classification error. (2) the classification in-
stability. (3) the K-nearest neighbor classifier. (4) the weighted neighbor classifier. (5) the bagged
nearest neighbor classifier. (6) the optimal nearest neighbor classifier. (7) the stabilized nearest
neighbor classifier. (8) the model selection via cross-validation for K-nearest neighbor classifier,
bagged nearest neighbor classifier, optimal nearest neighbor classifier, and stabilized nearest neigh-
bor classifier.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

Maintainer: Wei Sun <sunweisurrey8@gmail.com>

References

W. Sun, X. Qiao, and G. Cheng (2015) Stabilized Nearest Neighbor Classifier and Its Statistical
Properties. Available at arxiv.org/abs/1405.6642.

cv.tune 3

cv.tune Tuning via 5 fold Cross-Validation.

Description

Implement the tuning procedure for K-nearest neighbor classifier, bagged nearest neighbor classi-
fier, optimal weighted nearest neighbor classifier, and stabilized nearest neighbor classifier.

Usage

cv.tune(train, numgrid = 20, classifier = "snn")

Arguments

train Matrix of training data sets. An n by (d+1) matrix, where n is the sample size
and d is the dimension. The last column is the class label.

numgrid Number of grids for search

classifier The classifier for tuning. Possible choices are knn, bnn, ownn, snn.

Details

For the K-nearest neighbor classifier (knn), the grids for search are equal spaced integers in [1, n/2].

Given the best k for the K-nearest neighbor classifier, the best parameter for the bagged nearest
neighbor classifier (bnn) is computed via (3.5) in Samworth (2012).

Given the best k for the K-nearest neighbor classifier, the best parameter for Samworth’s optimal
weighted nearest neighbor classifier (ownn) is computed via (2.9) in Samworth (2012).

For the stabilized nearest neighbor classifier (snn), we first identify a set of lambda’s whose corre-
sponding risks are among the lower 10th percentiles, and then choose from them an optimal one
which has the minimal estimated classification instability. The grids of lambda’s are chosen such
that each one is corresponding to an evenly spaced grid of k in [1, n/2]. See Sun et al. (2015) for
details.

Value

The returned list contains:

parameter.opt The best tuning parameter for the chosen classifier. For example, the best K for
knn and ownn, the best ratio for bnn, and the best lambda for snn.

parameter.list The list of parameters in the grid search for the chosen classifier.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

4 mybnn

References

R.J. Samworth (2012), "Optimal Weighted Nearest Neighbor Classifiers," Annals of Statistics, 40:5,
2733-2763.

W. Sun, X. Qiao, and G. Cheng (2015) Stabilized Nearest Neighbor Classifier and Its Statistical
Properties. Available at arxiv.org/abs/1405.6642.

Examples

set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Tuning procedure
out.tune = cv.tune(DATA, classifier = "knn")
out.tune

mybnn Bagged Nearest Neighbor Classifier

Description

Implement the bagged nearest neighbor classification algorithm to predict the label of a new input
using a training data set.

Usage

mybnn(train, test, ratio)

Arguments

train Matrix of training data sets. An n by (d+1) matrix, where n is the sample size
and d is the dimension. The last column is the class label.

test Vector of a test point. It also admits a matrix input with each row representing a
new test point.

ratio Resampling ratio.

Details

The bagged nearest neighbor classifier is asymptotically equivalent to a weighted nearest neighbor
classifier with the i-th weight a function of the resampling ratio, the sample size n, and i. See Hall
and Samworth (2005) for details. The tuning parameter ratio can be tuned via cross-validation, see
cv.tune function for the tuning procedure.

mycis 5

Value

It returns the predicted class label of the new test point. If input is a matrix, it returns a vector which
contains the predicted class labels of all the new test points.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

References

Hall, P. and Samworth, R. (2005). Properties of Bagged Nearest Neighbor Classifiers. Journal of
the Royal Statistical Society, Series B, 67, 363-379.

Examples

Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Testing data
set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]

bagged nearest neighbor classifier
mybnn(DATA, TEST.x, ratio = 0.5)

mycis Classification Instability

Description

Compute the classification instability of a classification procedure.

Usage

mycis(predict1, predict2)

Arguments

predict1 The list of predicted labels based on one training data set.

predict2 The list of predicted labels based on another training data set.

6 mycis

Details

CIS of a classification procedure is defined as the probability that the same object is classified to
two different classes by this classification procedure trained from two i.i.d. data sets. Therefore, the
arguments predict1 and predict2 are generated on the same test data from the same classification
procedure trained on two i.i.d. training data sets. CIS is among [0,1] and a smaller CIS represents
a more stable classification procedure. See Section 2 of Sun et al. (2015) for details.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

References

W. Sun, X. Qiao, and G. Cheng (2015) Stabilized Nearest Neighbor Classifier and Its Statistical
Properties. Available at arxiv.org/abs/1405.6642.

Examples

Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Testing data
set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]

Compute classification instability for knn, bnn, ownn, and snn with given parameters
nn=floor(n/2)
permIndex = sample(n)
predict1.knn = myknn(DATA[permIndex[1:nn],], TEST.x, K = 5)
predict2.knn = myknn(DATA[permIndex[-(1:nn)],], TEST.x, K = 5)
predict1.bnn = mybnn(DATA[permIndex[1:nn],], TEST.x, ratio = 0.5)
predict2.bnn = mybnn(DATA[permIndex[-(1:nn)],], TEST.x, ratio = 0.5)
predict1.ownn = myownn(DATA[permIndex[1:nn],], TEST.x, K = 5)
predict2.ownn = myownn(DATA[permIndex[-(1:nn)],], TEST.x, K = 5)
predict1.snn = mysnn(DATA[permIndex[1:nn],], TEST.x, lambda = 10)
predict2.snn = mysnn(DATA[permIndex[-(1:nn)],], TEST.x, lambda = 10)

mycis(predict1.knn, predict2.knn)
mycis(predict1.bnn, predict2.bnn)
mycis(predict1.ownn, predict2.ownn)
mycis(predict1.snn, predict2.snn)

mydata 7

mydata Data Generator

Description

Generate random data from mixture Gaussian distribution.

Usage

mydata(n, d, mu = 0.8, portion = 1/2)

Arguments

n The number of observations (sample size).

d The number of variables (dimension).

mu In the Gaussian mixture model, the first Gaussian is generated with zero mean
and identity covariance matrix. The second Gaussian is generated with mean a
d-dimensional vector with all mu and identity covariance matrix.

portion The prior probability for the first Gaussian component.

Value

Return the data matrix with n rows and d + 1 columns. Each row represents a sample generated
from the mixture Gaussian distribution. The first d columns are features and the last column is the
class label of the corresponding sample.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

Examples

set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

DATA.x = DATA[,1:d]
DATA.y = DATA[,d+1]

8 myerror

myerror Classification Error

Description

Compute the error of the predict list given the true list.

Usage

myerror(predict, true)

Arguments

predict The list of predicted labels
true The list of true labels

Value

It returns the errors of the predicted labels from a classification algorithm.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

Examples

Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Testing data
set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]
TEST.y = TEST[,d+1]

Compute the errors for knn, bnn, ownn, and snn with given parameters.
predict.knn = myknn(DATA, TEST.x, K = 5)
predict.bnn = mybnn(DATA, TEST.x, ratio = 0.5)
predict.ownn = myownn(DATA, TEST.x, K = 5)
predict.snn = mysnn(DATA, TEST.x, lambda = 10)

myerror(predict.knn, TEST.y)
myerror(predict.bnn, TEST.y)
myerror(predict.ownn, TEST.y)
myerror(predict.snn, TEST.y)

myknn 9

myknn K Nearest Neighbor Classifier

Description

Implement the K nearest neighbor classification algorithm to predict the label of a new input using
a training data set.

Usage

myknn(train, test, K)

Arguments

train Matrix of training data sets. An n by (d+1) matrix, where n is the sample size
and d is the dimension. The last column is the class label.

test Vector of a test point. It also admits a matrix input with each row representing a
new test point.

K Number of nearest neighbors considered.

Details

The tuning parameter K can be tuned via cross-validation, see cv.tune function for the tuning pro-
cedure.

Value

It returns the predicted class label of the new test point. If input is a matrix, it returns a vector which
contains the predicted class labels of all the new test points.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

References

Fix, E. and Hodges, J. L., Jr. (1951). Discriminatory Analysis, Nonparametric Discrimination:
Consistency Properties. Randolph Field, Texas, Project 21-49-004, Report No.4.

Examples

Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Testing data

10 myownn

set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]

K nearest neighbor classifier
myknn(DATA, TEST.x, K = 5)

myownn Optimal Weighted Nearest Neighbor Classifier

Description

Implement Samworth’s optimal weighted nearest neighbor classification algorithm to predict the
label of a new input using a training data set.

Usage

myownn(train, test, K)

Arguments

train Matrix of training data sets. An n by (d+1) matrix, where n is the sample size
and d is the dimension. The last column is the class label.

test Vector of a test point. It also admits a matrix input with each row representing a
new test point.

K Number of nearest neighbors considered.

Details

The tuning parameter K can be tuned via cross-validation, see cv.tune function for the tuning pro-
cedure.

Value

It returns the predicted class label of the new test point. If input is a matrix, it returns a vector which
contains the predicted class labels of all the new test points.

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

References

R.J. Samworth (2012), "Optimal Weighted Nearest Neighbor Classifiers," Annals of Statistics, 40:5,
2733-2763.

mysnn 11

Examples

Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Testing data
set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]

optimal weighted nearest neighbor classifier
myownn(DATA, TEST.x, K = 5)

mysnn Stabilized Nearest Neighbor Classifier

Description

Implement the stabilized nearest neighbor classification algorithm to predict the label of a new input
using a training data set. The stabilized nearest neighbor classifier contains the K-nearest neighbor
classifier and the optimal weighted nearest neighbor classifier as two special cases.

Usage

mysnn(train, test, lambda)

Arguments

train Matrix of training data sets. An n by (d+1) matrix, where n is the sample size
and d is the dimension. The last column is the class label.

test Vector of a test point. It also admits a matrix input with each row representing a
new test point.

lambda Tuning parameter controlling the degree of stabilization of the nearest neighbor
classification procedure. The larger lambda, the more stable the procedure is.

Details

The tuning parameter lambda can be tuned via cross-validation, see cv.tune for the tuning procedure.

Value

It returns the predicted class label of the new test point. If input is a matrix, it returns a vector which
contains the predicted class labels of all the new test points.

12 mywnn

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

References

W. Sun, X. Qiao, and G. Cheng (2015) Stabilized Nearest Neighbor Classifier and Its Statistical
Properties. Available at arxiv.org/abs/1405.6642.

Examples

Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

Testing data
set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]

stabilized nearest neighbor classifier
mysnn(DATA, TEST.x, lambda = 10)

mywnn Weighted Nearest Neighbor Classifier

Description

Implement the weighted nearest neighbor classification algorithm to predict the label of a new input
using a training data set.

Usage

mywnn(train, test, weight)

Arguments

train Matrix of training data sets. An n by (d+1) matrix, where n is the sample size
and d is the dimension. The last column is the class label.

test Vector of a test point.

weight The weight vector for all n nearest neighbors.

Value

It returns the predicted class label of the new test point.

mywnn 13

Author(s)

Wei Sun, Xingye Qiao, and Guang Cheng

Examples

set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)

weighted nearest neighbor classifier
weight.vec = c(rep(0.02,50), rep(0,50))
mywnn(DATA, rep(-5,d), weight = weight.vec)

Index

cv.tune, 3

mybnn, 4
mycis, 5
mydata, 7
myerror, 8
myknn, 9
myownn, 10
mysnn, 11
mywnn, 12

snn (snn-package), 2
snn-package, 2

14

	snn-package
	cv.tune
	mybnn
	mycis
	mydata
	myerror
	myknn
	myownn
	mysnn
	mywnn
	Index

